Skip to content

Hash Table

2 posts with the tag “Hash Table”

Leetcode 763: Partition Labels

For today’s daily leetcode problem, we are given a string and need to split it into as many partitions as possible, ensuring that each letter appears in at most one partition. Additionally, the partitions must preserve the order of letters as they appear in the original string. However, we don’t need to store the actual substrings—our task is simply to return the lengths of these partitions.

Example Walkthrough Consider the string “pizzatime”. The optimal partitions would be [1,6,1,1]. Here’s why:

  • The letters p, m, and e each form their own single-letter partitions since they don’t share any letter with another partition.

  • The substring “izzati” forms a partition because it contains multiple occurrences of i and z, and we need to ensure that all instances of a letter belong to a single partition.

  • Since the letters must remain in order and cannot belong to multiple partitions, “zzati” is grouped together with i to form a partition of length 6.

Another example is “partitionlabels”, which results in [1,13,1]:

  • The letters p and s form their own separate partitions.

  • The middle partition, “artitionlabel”, must include all occurrences of a and l.

  • Since l appears late in the string, we must extend the partition to ensure all ls are included, resulting in a large middle partition.

Implementation Approach Since I was in a hurry and the constraints were small, I used JavaScript’s built-in .lastIndexOf() method to determine the last occurrence of each letter in real time. The key insight is that a letter’s last occurrence dictates where a partition must end. While this approach runs in 𝑂(n^2) time due to repeated .lastIndexOf() calls, an optimized solution could use a hashmap for 𝑂(1) lookups.

To efficiently track when to end a partition, I maintain a max variable, representing the farthest last occurrence seen so far. As I iterate through the string, I update max using:

max = Math.max(max, s.lastIndexOf(s[L]));

This ensures that if a previous letter has a later last occurrence, we extend the current partition accordingly. This is crucial for cases like “partitionlabels”, where encountering l extends the partition beyond a’s last occurrence.

I iterate through the string using a loop and keep track of partitionSize. Whenever I reach max, I add partitionSize to the result array, reset it, and continue. Instead of constructing substrings, I only track partition lengths, as that’s all the problem requires.

This greedy approach ensures an optimal partitioning of the string while keeping the implementation simple and efficient.

Leetcode 2780: Minimum Index of a Valids Split

I started today’s daily LeetCode problem by using LeetCode’s provided Lodash _.countBy function to quickly create a frequency map of all elements in the array. Since the dominant element is the one that appears more than half the time, it must have the highest frequency among all elements. The dominant element is the one with the highest frequency in the array, while my suffix sum will represent the total count of the dominant element within the given array. The problem also guarantees that the input will always contain a dominant element before any array splits occur.

Once I identified the dominant element, I used its frequency to compute a suffix sum of the array. To determine the earliest possible valid split, I maintained both a suffix sum tracking the remaining occurrences of the dominant element and a prefix sum counting the ones I had already seen. Iterating from left to right, I subtracted elements from the suffix sum while adding them to the prefix sum. Using the index i and the array length, I determined the sizes of both the left and right partitions.

Essentially, I maintained a prefix sum (counting occurrences in the left partition), the left partition’s size, a suffix sum (tracking the remaining dominant elements in the right partition), and the right partition’s size. With these variables, I could efficiently check whether a valid split was possible at a given index. This approach is more optimal than a brute-force solution since I never actually split the array; instead, I keep it intact while using only four variables to determine whether a given index is a valid split point. For example, initially, the suffix sum contains all instances of the dominant element. If i moves to the first element and that element is the dominant one, I increase the prefix sum while simultaneously decreasing the suffix sum.

Finally, since it is possible for the array to have no valid split, we need to return -1 if no valid location is found. To handle this, I simply iterate through the array, returning early if I find a valid split point. Otherwise, if no valid index is found, I return -1 at the end.